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4• I. SUMMARY

A. PURPOSE AND SCOPE

In this report we discuss the problem of designing optimum signals
and receivers for an active sonar system operating in an environment in whichJ the principal cause of interference is reverberation. We have considered only

the problem of target detection (as opposed to the problem of range or Doppler

I • estimation).

In many sonar systems the primary limitation on performance is

energy scattered back to the receiver from various objects in the ocean. If the
scattering structure were known in detail, the reverberation could be treated as
"a deterministic return and the signal and receiver designed to eliminate it. Be-
cause of variations in the ocean, however, this type of model quickly becomes
unrealistic or unmanageable. For this reason, we chose an alternate approach

in which the reverberation return is treated as a random process. Characteriz-
-- i ing the reverberation as such a process enabled us to consider a large number of

scatterers efficiently and to attempt to design signals and receivers which will
work well on the average.

First, we constructed a suitable statistical model of the random re-

verberation return. Starting from physical considerations, we showed that the
.- - return can be reasonably characterized as a zero-mean non-stationary Gaussian

random process. The correlation function of the process, which is a function of
the transmitted signal and distribution of the scatterers in range, is assumed to

-- • be known.

Once this model was obtained, the conceptual path to the optimum re-
.- - ceiver was clear, and we developed the equations which specify theoptimum re-

4 ceiver. The parameters in the optimum receiver depend on the structure of the
"reverberation. The resulting receiver may be complex; frequently, therefore, a

71. simpler, sub-optimum receiver is used, e.g., one which ignores the reverbera-
tion and assumes the additive noise is white. In this case, the receiver consists
of a filter whose impulse response is the signal reversed in time, a detector,I • and a threshold device. This type of receiver is a conventional matched filter
receiver. We have given expressions for the performance of the optimum and
the conventional receiver for arbitary signal shapes and reverberation charac-

L teristics.

We also considered the signal design problem. We derived some

general properties that are useful in choosing a suitable fcrm for the transmit-I ted signal.

3,



To obtain a q'antitative indication of the performance levels that can
be achieved using various signal shapes and optimum or conventional receivers,
we considered two cases in detail: (1) ieverberation which is homogeneous in
range and results in interference which is a stationary Gaussian process, (2)
reverberation which is non-homogeneous in range and results in a non-stationary
Gaussian process. In both cases we were concerned principally with a transmit-
ted signal having a Gaussian envelope and linear frequency modulation.

B. CONCLUSIONS AND RECOMMENDATIONS

1. The most effective way (within the limitations of our model) to
combat reverberation is through proper signal design. In fact, proper signal
design is more important than optimum receiver design.

2. The evaluation of the performance of the conventional receiver
for arbitrary signal shapes and reverberation characteristics is a straightfor-
ward calculation. Finding the optimum receiver for arbitrary signals, however,
appears both difficult and unrewarding.

3. In many cases, the best signal will not be a Gaussian pulse. The
performance achieved using pseudo-random waveforms and simple pulse trains
should 1e evaluated. (See References 14 and 15 for some examples.)

4. In some cases, the optimum receiver will offer enough improve-
ment to warrant its complexity. To implement it, one needs to know the statis-
tical structure of the reverberation and thus needs some means of measurement.
Considerable research has been devoted to the related measurement problem in
a radar astronomy and communications context. Presumably, some of these
results should be adaptable to the reverberation problem.

5. In most cases, the scattering function of the reverberation will
vary slowly with time. An ideal system should have provision for continually
measuring the scattering function and adapting the transmitted signal shape and
receiver to the current environment.

6. We have considered only detectability and time processing. The
problems of parameter measurement (such as range and Doppler) and the space -
time problem should also be considered.

2
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I II. INTRODUCTION

S1In the simplest detection problem, the signal returned from the target
is completely known. In this case, the receiver has available for processing a
waveform which consists of either ambient noise, if no target is present, or of

1 ambient noise plus the target return signa" if a target is present. The detection
problem consists solely of deciding which of the two alternatives is correct.
The simplest example of this case occurs when the ambient noise is a sample

I function from a white, Gaussian random process (spectral heighto volts 2 /cps)

which is independent from the signal. It is well known ý that in this case,
, • the optimum processor is either a correlation receiver or a matched filter

receiver and that the performance depends only on the ratio E/No (where E is
the energy in the signal).

Two characteristics of this solution are of interest to us. First, the
- performance is completely independent of the signal shape. Any signal with a

"given amount of energy is as good as any other. Second, one can achieve any
desired performance level by increasing the transmitted signal energy to a large
enough value. We shall see, however, that this simple model does not adequately
describe the active sonav problem and that these two characteristics cannot be
achieved in an actual situation.

"" - When a signal is transmitted into the ocean, it encounters various
inhomogeneities in the medium and numerous objects which cause it to be. scat-
tered. The return from these various sources is called reverberation. (In
"Section III, we shall ccnstruct a quantitative model of thi 3 reverberation return.)
Since the reverberation return is caused by the signal, it is clear that the statis-

Stical characteristics of the reverberation "noise" are not independent of the sig-
nal shape. One would suspect, therefore, that the receiver performance will no

, longer be independent of the signal shape. Moreover, increasing the transmitted
signal power will increase the level of the reverberation return. Thus, increas-

I • ing the transmitted energy may be an inefficient way to combat reverberation.

The problem bere is one of target detection in the presence of inter-
I • ference which depends on the transmitted signal. The basic ideas involved in

Sour solution are reasonably straightforward, but the manipulations necessary to
obtain a quantitative solution are some-,hat involved. To illustrate some of the

I I basic concepts involved, we will consider a simple example of target detection
in the presence of interference. The model does not represent a realistic
sonar problem, but is only a tutorial examp,_,.

I /We assume that the reader is familiar with the application of statistical detec-
tirn theory to receivers operating in an additive Gaussian noise environment.

3
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Consider th. simple problem shown in Figure 1. The signal returned
from the target is Sd(t). The signal returned from the interfering object is
Si(t). In addition, an additive, ambient noise n(t) is present. The received
waveform is a sum of these three terms.

r(t) = Sd(t) + Si(t) + n(t) (II-1)

As a special case, let us assume that SI(t) is identical to Sd(t) except
for a time delay and an attenuation.

Thus,

SI(t) = a Sd(t - T) (II-2)

where " is assumed known. If, in addition, the value of "a" is known, the solu-
tion is simple. One subtracts out the interfering signal and then uses the usual
matched filter receiver. The receiver structure for this simpie case is shown
in Figure 2. To make the problem more realistic, we must include some uncer-
taiaty to the interfering signal. Therefore, we assume that the attenuation is a

2
Gaussian random variable with zero-mean and variance, Oa

We now have a familiar two-hypothesis problem.

Under H0, no signal present, the mean of r(t) is zero and the covar-
iance function is:

N
R(t, u) = E r(t)r(u)] ___ 6 (t-u) + T 2 Sd(t- )Sd(u-") (I1-3)

where we assume the additive noise is a sample function from a Gaussian process.

Under H1 , signal present, the mean of r(t) is Sd(t) and the covariance

function is unchanged.

/ This example is based on a similar example in an unpublished memorandum
by W. M. Siebert.

4
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I The optimum detector consists of a correlation operation on the
received signal r(t)

XI= r(t) q(t)dt (11-4) 1
0

where q(t) is the solution to the integral equation:

q (t) - 3 Q(t, u) Sd(u) du 0< t <T (11-5)

0

and the function Q(t, u) is the "inverse kernel" and satisfied the equation:

6(t-z) = Q(t,u) R(u,z)du (11-6) 1
0

This solution is just a special case of the nonwhite noise problem.

One can verify by direct substitution into Equation 11-6 that
2

U () 2 Ca S(t-' Sd(U-T) (11-7)
N Ndt*0 0 0O

Then, substituting Equation 11-7 into Equation 11-5, we obtain:

CY2  rT..2 2 a Sd(T )du
q(t) = - E + N d Sd(U)Sd(u--)0 0 a 0

-212 Sd )-E da E S+ (t-T)(0 a 0

L2II
-I I

6
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I \where

J Sd(U)Sd(U-T )du
I di E (11-9)

represents a normalized correlation between the desired signal and the interfer-
ing signal. Clearly, 0 di(T)) ! 1.

I The optimum receiver consists of two parts, as shown in Figure 3.
One part is the usual correlation operation; the second part is a partial subtrac-
tion of the interfering signal.

I
I Sdt() 2/No

W I DECISION
" ~DEVICE

i7 7
0.

m• m • w i• • •l aw m • • am • • m• • w ~ m w• m m i2a



The optimum receiver has a very good intuitive interpretation. In
Figure 2, we saw that if the interfering signal were known cxactiy, we could
subtract it out. A logical approach in the presence of some uncertainty might
be to look at the received waveform r(t) and estimate what the interfering signal
is. We could then subtract this estimate and pass the result into the normal
white noise detector. We will now demonstrate that this logical approach is
exactly what the optimum receiver is doing.

The only unknown quantity in the interfering signal is the amplitude
"a". One can show that if the received waveform is

r(t) = aSd(t-T) + n(t), (II-10)

then the most probable value of "a" and the minimum variance estimate of "'a"
are identical. The estimate, a, is given by

CY2
a

a N +r(u) Sd(u ) du (11-11)
o+ 0

2

The equation describing the receiver shown in Figure 4 is:

X = [r(t) - a Sd(t-T)] Sd(t) dt (11-12)

0

Substituting Equation 11- 11 into Equation 11- 12, we obtain:

2 (t)Sd(t)dt 2 a di (Tr)T
X - J r t)SdNt)Sdt-- (II-13)

0 +a 2 E 0 0S0u2 0
2 a

We see that the two receivers are equivalent. Thus, the optimum
receiver does exactly what one might expect.

A complete measure of performance is the ratio of the square of the
mean of X under hypothesis H to the variance of X.

Thus.

E [X : H If
VarX (11-14)I0 Var X

8
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One can show that

2
S2E 2 N ad I = (IT + 3 ~~ 1-50o N Ydi 2E o2

.,: o0 + C--
N a

0

We observe that the first term is simply the usual white noise result.
The second term represents the degradation due to the interfering signal. The
magnitude of this degradation depends on:

1. y . (T) • the correlation (or similarity) between the desired
1i signal and the interfering signal.

2. Ga2  the strength of the interfering signal
a

'" 2F
3. --- : the energy-to-noise-density ratio.

N
0

If any of these are small, the effect of the interfering signal will be small. The
synal design problem in this case is simply choosing a s.;gnai shape so that
y ,. (T) is small. For fixed T and no constraint on peak transmitter power,

tl& solution is simple.

Let

S (t-• 0< t• !5

Sd (t) 2--- (1I-16)

0 Elsewhere

In general, for the cases of interest, the solution will be more com-
plicated.

Now, let us assume that the designer is unaware of or chooses to

ignore the interfering target. He would then use a conventional matched filter

which is now nonoptimum. One can verify easily that

2E d____2_E_(II-17) 2EE

c (r) 11 aE 2o1+di N a

0

10
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SIt ic -nnvpnipnt tn rnmnlttp a nilunti•i "rhe dearadarinn dlle In inter-

_ ference." Taking the log of Equation 11-15, we have:

2 ( 2E 1
I "o N + lN 1a d 22E o

logd =~ log N.R + log I-Y.(T ) -~J (11-18)
0 + a

IISince the first term is caused by white noise, the degradation due to
interference is just the magnitude of the second term.

3 Similarly, from Equation 11-17,

Ilog d3 2=log 2E _log [I + Y2 (T) 2E C2 (11-19)
c0dR0 -a

The degradation for the conventional and optimum receiver cases is
shown in Figure 5.

l We observe that in both the good performance region (y2 - 0) and the
bad performance region (Y 2 . 1), the optimum receiver is not much better than
the conventional receiver. We can see that this result is intuitively logical by
looking at Equation 11-8.

i As y2 -, 0, the coefficient of the second term approaches zero.
SPhysically, Y2 = 0 means that the desired signal and the interfering signal

are orthogonal. Thus, the interfering signal causes no output in the correlation
) detector. Clearly, a signal that causes no output cannot affect the performance,

and there is no reason to modify the detector.

* At the other extreme, as 2 -. 1, the modifying term, Sd(t-T), looks
Smore and more like the original term. In the limit, Y = 1, Sdt-) = Sd(t)

and no modification is necessary.

I This simple example illustrates many of the important features of the
actual reverberation problem. We may summarize these briefly:

S1. The optimum detector tries to subtract out the interfering
signal. Since it does not know the signal, it uses the
received waveform to estimate the interfering signal and
then subtracts out this estimate.

•rhur ~iagl.3uttt.
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It.ic i t1Coite ofsinals affet-Cs dt-her"iformance apprreciabiy.

The goal of the signal designer is simple to state: make the
I signal returned from the desired target orthogonal to all of
I •the interference. We will see that in most realistic situa-

tions, as we would expect, this is difficult to do.

1 3. To design an optimum detector, requires some knowledge
of the interfering signal. In this simple case, we knew the
shape and the probability density of the amplitude. We

I would expect that as knowledge of the interference decreased,
the improvement gained would decrease. In many cases,
because of a lack of knowledge or in order to simplify the
resulting equipment, one uses a "conventional" receiver.

We observed that for certain parameter ranges there was
not too much difference between the conventional and the

7 optimum receiver. We will find Ciat in many cases of
- interest proper signal design is much more important

than the difference between a conventional and an optimum
receiver.

B. PROBLEM FORMULATION

There are important differences between the simple problem discussed

above and the reverberation problem:

1. Instead of one interfering target, there is a large number

of interfering returns from reflecting objects.

2. The returned signal from the target is a band-pass

waveform. It has a random phase angle which must be
taken into account.

We shall see that these differences take us from a tutorial exercise
Sto a reasonably good model of an active sonar in a reverberation environment.

The cost of this transition is a great increase in the complexity of the calcula-
I tions. It is important to emphasize that the concepts in an actual sonar problem

are identical to those in the preceding example.

Our model of the reverberation problem is shown in Figure 6.

'iI,
13
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FIGURE 6 CHANNEL MODEL

The tiansmitted signal is:

S T (t) =RRe u(t)e C [(t)ej"(t) c = u(t) cos(Ix t + 0(t) (11-20)
where:

where: f(t) is the complex envelope/

u(t) is the actual envelope

¢ (t) is the phase

/ For a discussion of the complex representation, see Woodward (Reference 1)
and Hel strom (Reference 2).

14
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The returned signal R(t) = Re nr(t)ej 'c consists of the following three parts:

SThe reverberation return due to the collection of nonstationary
scatterers:

N R( )M Re nr(t)e ](I-21)
2. The return due to additive Gaussian noise:

S~N (t11-22)n

Na R e n(t) e c (11-22)

3. The return due to a target. This is an attenuated and phase-
;hifted replica of the transmitted signal.

SA Re f(t)-Td)e (11-23)

I where 8 is uniform [o, 2TT1 and unknown. The first two parts of the return
are always present. The third part is only present if a target is present.

As before, we are concerned with deciding whether or not a target is
present. In other words, we want to decide between one of two hypotheses:

H 0 (no target): r (t) = n r(t) + n (t)

j LUt + jB
H (target present): r(t) = f (t- T )e + n (t)+ nj(t)I " r nat

I3
I If n (t) is a complex Gaussian process, the solutian to the problem

r
can be expressed in terms of an integral equation. Assuming the integral equa-
tion can be solved, one can then construct the optimum receiver.

u thenthe
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_I. MODEL FOR NON-UNIFORM SCATTERERS
I

In this section, we develop a model for the reverberation return.

Our approach is a geneialization of that in Reference 3 (more readily
available References are 4 and 5).

The transmitted signal is:

T[(t) =oRe [-(t) eI

We are concerned with f (t) the complex envelope.

"f(t) = u(.,) e Jt) (1I- 2) J
The complex envelope returned from an individual scatterer (the n t

scatterer) is:

Sn (t) = Zne f t - t) (tI1-3) n

where: T

Z is a complex aumber which is the magnitude and phase of
the echo (i.e., "strength" of echo),

th •
,. is the Doppler shift due to the radial volocity of the n
n scatterer, anid 

-•

th
t is the delay due to the position of the n scatterer.

The entire complex envelope due to reverberation is:

n(t) = r Zne f (t - tn)
all scatterers I

We make the following assumptions regarding the scatterers:

I

16 arthur •3l.ittlt.3unc.



Assumption !

SThe distribution along the path obeys a non-homogeneous Pois on law.
(See Reference 6.)

The probability that a scatterer exists in the time interval. It is:

Pr I event, t <t<t]dt (III=5)

All of the properties of a stationary or homogeneous process can be
e-ter-ded easily to a non-homogeneous process. The two properties that we will

use are: Ta (x)dxn exp - fa (x)dx

Property I: Pr (n events in interval [-T, T]) =

7! (111-6)

* Property II: Given that n events occur in the interval [-T,T], the joint
probability density of their occurrence times is given by the expression

2Pt t2 .. t n events in (-T,T)[tl't2'' t I

1 1

TT rf T dxn •a (t1) a (t2),.. a (t n)-7

"'•~~ Lf (x) x
~If

--• Assumption 2

The velocity of each scatterer is a random variable. Velocities ofj different scatterers are independent random variables.

The probability density governing the scatterer velocity is time
dependent. The probability that a scatterer occurs in the intervalt , t +dt"
and has a velocity (frequency shift)in the range [ 1 , uI6 + can be

- described by a joint density,

(t t a(ta) (f1I-8)
Pt P') 1 It i t Pt (t. P t ( Tla

II
f
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Assumption 3

The strength of each .qartrprr iq n ,-3nhm varinblp H rnrttho nf
different scatterers are independent random variables. The strength is independ-
ent of both position and velocity. We denote this probability density by: 3

Pz(Z) = Pz(Z) PZ (Z) (111-9)

Using these three assumptions, we want to find the correlation function
of the reverberation return. For s!mplicity, we will assume E [ZP1 ] = 0.I

The complex envelope of the rcturned reverberation signal is:
p) t

n(t) = Z e f (t-tm) (11-10)

m =0

Then, the correlation function is:

"R (t<7 (t >
Ct, d• = Lr( ) r (t (II-1

An easy way to find this is to assume there were n scatterers in the
interval (-T, T). If we denote the conditional correlation function based on this
assumption by R (t, tQ), then:

R (tt'ts) = R R(t t8 )- Pr[n events in (-T,T)] (111-12) 1
= =0

Using Equation HII-6, this reduces to: I
T a (x) dx exp - •T a (x) dx

R(ttt) = Rn(ttt) fT x] T(-13)
n =n0n=0 3

/ We use the symbol E to denote the expectation of a rand-rm variable. 3

1
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Now we find R(t J-)If q.

Using Equation 111-7 through HI-ii, we may write;|T Ti
*R(t 't =••_ T d dt.. .dt a(tI).. .a(tn)

1- VT] -T -T

4 PV• t1 •l tl)' dwo1 ...d
n tn~un: tn) " " n

ff Pz(Zi .p (Z )dZ .dZ
Sf f z 1z ""z nz >d *...n

? n

•-n n .+- (t -ti) _(ttk

zi Z f(t't.)f*(t~tk'e e ft)(ee-14)

Several observations simplify this expression:

2' . k i=k (11-IS)

0 0 i k

This reduces the double summation to a single summation.

If )2. For i = k, the exponential terms reduce to:

+jJLi (t-t 9 ) +YJiT
e e (111- 16)

(where T=t -t)

SThis approach is similar to Sec. 7-4 in Reference 7. This section follows the
original work of Rice (Reference 8).

19
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Now consider the term in the series for i = q. After performing the
integration with respect to Z, the multiple iategral becomes:

T T
!f f. dtl-.dtq dtq -. dtn a(tl) ... a(tq )a(tq l... a(tn

f a(x)dx
-T -T -T

f-f 11,tiq-1 tq-1 q- - q+l1tq4- + 1l~

"".. "PV It (uun: t n) d.l'"-dw q -1I dx q+l' "dx n
nj n

f"f PZ (Z I)... Pz (Zq- 1) Pz (Zq+ 1 )" ."PZ (Zn)dZ I" "dz dZ q+1 .. dZ
q-1 +I nq-1

T at)dtq pcltq(q tqdq•E Z 2'(-).q"(t-q)e q (III=-17)

-T tf~tW~qdv

The integrals with respect to variables other than t and z are straightforward.
q q

We observe that the integral with respect to 't is in the form of a condi-

tional characteristic function: q

MI :t (T:tq) f PuJq " tqIe diq (iii-18)
q q cc q,

Assuming that T is large, we can neglect end effects.

Since each term in the sum is the same, we have:
1• T

R(t t') = n[ ~] f a(t_)M. .t (t--tc:t_) f (t-t )T*(ta-t )(111-19)
ja (x) x -T

-T
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I
lot- t" inte.ra. h,,,, itt) Shstitutirg aquiarion 1MI-15 into Equation 111-9, we

I ha ve:

* I~Ta~~dxfl a(x)dx 2
a(x)dx exp ad nErZ 2.Itt t-•)

Rt tQ) =4 LJ ' n! T (111-20)
n r0a (x) dxn n0 J

SThis reduces te: T LIf Taxd]n--
"R(t ,t )=•E[ ,2] I (t ,t.) exp - a(x)dx f n- l (III-21)

f B an2 (n-)

We observe that the sum cancels the exponential term preceding it.
-- Equation !TT-21 becomes:

R (t , t) = . E[I I Z I, (t, to) (I-2

where

I (t ,t) = a (x) M (t-t9) f (t - x) f (t8 - x) x(111-23)
4T q

Equation 111-23 is valid for the case defined by the original assumptions,
and it can be written in several different ways. The two-dimensional correlation
function of a signal is defined to be:/

(t-T (t + Te Jdt (III-24)-. 01 (-r, '1) = •( -)7

or

Irj e~wf (111-25)
f (t - 2) f" (t +•) 2 -2 01 f (a,.u +at•(I-

By letting

t +t
t- 2 x, t -t , Equation 111-25 becomes:I''

S/ See, e.g., Woodward (Reference 1) or Siebert (Reference 9).
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/t + t

f (t -x) (t- 1 A (t8 ) e dw I
>t-)= 2- TT ( a (111-26)

Substituting Equation !NT-26 into Equation 111-22, we have:

ff t +t"R~t~t) • JfI2 a(x) M -ts:t)-t;.i•)ex j, 2

(111-27)

But a (x) M - :x) -jamdx S( -w; t t)(111-28)f a ; x)M(t-t xe -(I-8
q

where

S,- J~l1 +2x2

S(v 1 , v2 ) =fj V e PT , (Xl' x2) dxl dx2

[ the characteristic fctn. of 1
the joint density (111-29)

"nv(tts) = 82 t- ;)exp ts d

(111-30)

The total interfering noise is the sum of the reverberation noise and the
ambient noise.

The total correlation function is:/

Rr(tt, t )= 6(t -t (tB,) (111-31)r oL (0 c a n tC tB)
, r

For a large number of scatterers, one can show that the interferingI noise approaches a non-stationary Gaussian process./i

* ,• We assume the ambient noise is a real white Gaussian process with double-
*• sided spectral height No/2.

Il/The technique is similar to that of Reference 4.

22
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I

I •The simplest case is when the distribution in range of the scatterers

is uniform and the velocity density is uniform.

j Let the
a(x) = y -T<x <T (111-32)

Physically, y is the number of scatterers per unit interval (time). Now let
T0 CO

I Then, from Equations 111-22 and 111-23

R(t, t )=yE[I IM (t -t8  f (t-x) f (tS-x) dx (111-33)
q

or

letting u = t -x

T= t -t

we have:

*0 -- I 7 "
, R (Tr) y , E [ Z!2 M W (-T) ff(U) f (U+ T) du (1-1I-34)

I But the integral is just "Rfr)

R f(T) f f (u) f(u+T) du (I-35)

Then, -

(T) 2y M (T ) (III-36)
n W f av W fSq q

* i Our principal results in this section are Equation II-30. the correlation
function for the reverberation return for the case of non-uniform distribution in
range of the scatterers, and Equation 111-36, the correlation function for the rever-

i • beration return for the case of uniform distribution in range of the scatterers.
Since the process is Gaussian it is completely characterized by its correlation
function. In the next section, we use this to develop the optimum receiver structure.

S23
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TV. DRRIVAMT!ON f) P"T IakM RECEIVEt -r ST-rUTU

In this section, we derive some general results regarding receiver
structure and performance that we will need for our specific problem.

A. STRUCTURE/

We first derive the structure of the optimum receiver and the conven-
tional receiver. Then, we find expressions for their performance.

As pointed out in the introduction, the optimum receiver solves the
hypothesis testing problem. One can demonstrate that for many interesting
criteria (e.g., Bayes, Neyman - Pearson, Minimax) the solution reduces to one
of forming the likelihood ratio and comparing it with a threshold./ The value of
the threshold will depend on the decision criterion and relative costs. We will
not concern ourselves with choosing a specific value of the threshold but only
with forming the test statistic.

We are concerned with detecting a signal which is a member of the

ensemble S(t,3), where:

S (t, 9) = Re [Sd(t) ej (V-)

where p() =, 0 < 3< ý-T (IV-2)

and S d(t) = Af(t- Td) e (IV-3)

To form the likelihood ratio, we expand the complex envelope r (t)
using a Karhunen- Loeve expansion.//

/ Helstrom (Reference 2), Chapter 3.

//See Reference 7, Chapter 6.
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I

The ortlonormal functions of this expansion are the eigenfunctions of
2 : the integral equation:

3 f T
X \•nn(tct) = R T (tct, tS) On(t ) dt- (IV-4)

-'F

where ro (ta, tQ) is the complex covariance of ro(t).!
(t~b ts) 2 E [ -r(t(,) -ro (t) (I V-5)

Then,

?r(t)= r rn n(t) (IV-6)

n = fT (t) (t) dt = xn + j yn ([V-7)

! _T
j We now want to find the statistics of xn and Yn under the two hypotheses.

Under the no-target condition (hypothesis H0 ), the complex envelope of
Is the received signal is

r (t) = n r(t) + n a(t) (IV-8)

I Under the target present condition (hypothesis H1 ), it is

I rl(t) = (t)eJB + n (t) + n (t) (IV-9)d r a

SClearly, xn and Yn are Gaussian random variables under either hypothesis.

* iUnder hypothesis HO,

E [Xnl = E [yn 0 (IV-10)

12255 3yth



while under hypothesis H1 ,

E -~ 1= We O S ej (IV- 11)
E[xn+j Yn] nErn E Sd(t)eJ Cn(t)d i n

-T

where

S= [ Sd (t) On (t) dt (IV- 12)

-T

The covariances are independent of the hypothesis and are:

•[(r Y)o- - *)]• E du v E [ T (u)'"'(v)]0*(u) Om (v)

-T -T

= 2 du dv R (u, v) 0 * (u) 0m(v) (IV- 15)
0

-T -T

Using Equation IV-4, we have:

E[(r-")(r-r)] 2 Xm du n ((u)m (u) - 2 m nm (IV- 16)

-T

Similarly, using the properties of the expansion, we have:

Ejrr r m = 0 (TV-17)

Since r n x + Yn (IV-18)

26
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we have E -1 (x 'A E , - y 0 ) =9l•)
n n m in n nm' [ "n(m ) n nm

and E r( y -y0 (IV-20)

Therefore, the x. and Yn are statistically independent random vari-
I ables. Now write the likelihood ratio:

A - ( (IV- 21)p(r H0)

Now

KK (x - E (x))2 +(y -E(y

I ~ ~~~ p( " H ) =, p( d "1 ex ni 2 n ))222

I n1op(,-r Hx) plB) dBT2• exp - E X(IV-23)
I if[=l n=1 nI or

=f p(ST d K K rn -sn e (IV-23)1 0=I2tn12

and

I~ ~ K 2RSnn--In

Ir
Sd(rH H exp +, (IV-24)

0i1 2m,, n= Z

- n

We have:

S
2 ReLsre n -n (

32,
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1

K *Sr

A a -Ln (IV-26)In=1 
n

where Av is real and positive. j
Then, we may write: J

""-ex L id2i (IV-27)

on= I n

But the c':)ression in the bracket is just 10 (AK) where 10 is a modified Bessel
functon of the first kind and order zero. That is

2

sn

•,- °(AKI exp- n2x I

Now Io(-) is monotone for positive and negative arguments and z-ym-
raetric around the orinn. Letting K - •, we see that an adequate statistic is:

K sv
K- nn qI * (t) -r(t) dt (IV-28)

n=-I n -T

where q* (t) is the solution to the- integral equation. 1

fdt) = fR (t , t) q(t 3 ) dt$ (IV-29)
-.oT 0

The second term in Equation IV-27 is incorporated into the threshold.

2
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The desired o-)timum operatios re zhowkun in Figure I -h desired

Soperations can be realized physically by passing r(t) through a narrow -band
L i"re whose complex impuise response is

h ( q) = I-'< T <T
It opt

ho (T) = 0 elsewhere (IV-30)i opt

and detecting the output envelope. This realization is shown in Figure 8.

We now want to consider three cases:

"" 1. The scatterers are uniform in range. This leads to a
stationary process for nT(t) (see Equation IV-36). One
solves Equation IV-29 to find the optimum receiver.

2. The scatterers are non-uniform in range. This leads to
a non-stationary process for rT(t). One solves Equa-
"tion WV-29 to find the optimum receiver.

3. The reverberation return is ignored in finding the opti-
mum receiver. We assume:

R (t t-) = N 6(t -t) (IV-31)
r a o 0

0

Then,

.q ( S) =(t) (IV- 32)I 0

This is called a conventional receiver. We then investi-
gate the performance of the conventional receiver for non-
uniform and uniform scatterer distributions.

-i In the next section, we consider cases (1) and (3).
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I;

B. PERFORMANCE OF OPTIMUM RECEIVER/

Our decision is based on comparing the magnitude of A with some

threshold "o.

We must consider the statistics of I A under hypothesis H0 and

hypothesis H1 .

Pr [False Alarm] f po(A) dA PF (IV-33)

hI0

Now

A = x + jyI (IV-34)

where

x Re q (t) r(t) dt (IV-35)

-T

and

V m q (t) ~ (t) dt (IV-36)
f 0

-T

Var x = Var y = j q*(t) 'd (t) dt d (IV-37)

I: -T

and
2

2d2

p (A) - e (IV-38)
a 2

I • / Our derivation is rather sketchy. The details are on pp. 149-156 of Helstrom
(Reference 2).
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Sub.stitutino, ]kquarion IV-1R inrn P-mritn TV-.V; andi iva-v atinc xuw halve"

t2

0

P exp - (IV-39)
F 2d2d2

0

Similarly, one can show, under hypothesis H, that

2

ii = d cos : (IV-40)

0

= d2 sin (IV-41)

0

and the probability of detection is:

Pr [detection] = Q(d , -) P (IV-42)
o d D

where Q(a,b) is Marcum's Q function. (See References 8, 11, and 12.)

Q(a,b) -Jx exp (x 2+a2 )Q~~b - 2 I (ax) dx
0

b

Observe that from Equations IV-39 and IV-42, we may write:

PD = Q(d, 21n PF) (IV-42a)

One can plot PD vs. d2 as a function of ?IF" This curve is shown in Figure 9./

When the correlation function is stationary, there is a simple expres-

sion for d2 in terms of the various spectra. For simplicity, assume that the
observation interval is infi::ite.

/ ur figure is similar to Figure V-2, p. 155, Reference 2. An earlier rz-fer-
ence is Reference 10.
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I

Then, Equation IV-29 becomes:

Sd ( ) = R(tý) dt_. (IV-43)

and Equation IV-37 reduces to:

d = f ) (t) dt (IV-44)

Equation IV-43 can be solved using Fourier transforms. Transforming,
we have:

Q(L) = Sd Rd (IV-45)SRO) N +S (±)

r

and using Parseval's theorem:

2 M d

d = d - - (IV-46)0 N 4 S*(1) 2-7
0 n

-- O r

In the absence of reverberation, the receiver is specified by Equation
IV-32 and

d (t) dt = E r (IV-47)o N d W/d N

Observe that d2 is just the S/N ratio at the receiver output.
0
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C. PERFORMANCE OF CONVENTIONAL RECEIVER

I. General Error Expressions

As we pointed out previously, what we mean by a conventional receiver
is one which is designed under the assumption that the interference is additive
white Gaussian noise. Clearly, when this assumption is correct, the resulting
receiver is optimum. Whenever reverberation is present, this "conventional"
receiver will not provide the optimum processing. Because the conventional re-
ceiver frequently is far easier to implement than the optimum receiver, we want
to find out how far from optimum the conventional receiver is.

In this case,

q*(t) = f(t) (IV-48)
c N

0

Under hypothesis H0 ,

x + jy q (t) (t) dt = f (t) (t) dt (IV-49)

-T -T

T T

-T -T

or

S Var[x] +Var ry] =2 3" T 3"=20 I-1
Vr [X] + -V j- du dv S(u) (v) Rr(u, 20 (IV-51)

0 -T

Then, in a manner identical to that used to derive Equations IV-33,
IV-38, and IV-39, we obtain

P = exp 0 (IV-52)
F 202p c
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Under hypothesis H1 ,

T + jy f q"* (t) E rI (t) dt

-T

f T § 2EI= R- *(t) Sd(t) ej" dt N r e jS (IV-53)

-T 0 0

or

?E
S~r
coN r (IV-54)

0

and

2E r sin (IV-55)

0

Then

1 (-w~- COS )t_ (y~.j sin3)

x2  2 + 2 (x cos + - y sin F

p 1 (x,y, )= exp - 2N (IV-57)

2TZCc 20c
36t
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A

P(3) pL (x, y) dx dy (IV-58)

_, ~R >- .

I Changing to polar coordinates and integrating, we have:CO 27 z +z Nr-2 Zcs6o
Pd (2- d&-_ exp - 0 - 0 (IV- 59)

The answer is not a function of S, so we have:

22E

ZdZ z e (IV-60)d 22 2 d 2

3c 2%

IN
1 

22

2

Q ( Z. d = x e Io(a.x) &x (IV-61)

I A0  0

Lett a in the Equation IV-60, we obtain:

1 
2

2 E

f x NJx x exp -[ Q], (IV-62)
! -
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just as a l cU 'ca s it is.. us f-&U, to n ... v

F2E1 2

2 _ mean of output I H1  2 N0
d I- - (IV-63a)

c variance of output 2
c

Then, we may write

AO
P Q , - (IV-63b)

Using Equations IV-52 and IV-63b, we may write:

P Q (d, -21n P) (IV- 63c)

Thus, the quantity dc completely characterizes the performance of the conven-
tional receiver./ Fo: a given PF' we may use Figure 9.

We now want to obtain some simpler expressions for d2 for the sta-
tionary and the non-stationary cases.

2. Stationary Case

For the stationary, infinite interval _ýase. a simple expression can be
obtained in terms of the various spectra.

For the stationary case, Equation IV-51 becomes

2 1
c 2=f2 du dv (u) Sd(v) RT(u-v) (IV-64)

0

/ This was pointed out by C. Boardman, M.i.T.
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A

From Equation 111-36,

(u-v) YEI 2 }M (u - v)Rf(U-V)21 M1 (u-v) Rf(u-v) (IV-65)
r q q

Defining,

S ) =e-Jtdt (IV-66)
Sd (u f Sd (t)ed

and

"" Sr() = f W(t) e'jt dt (IV-67)

"Then,

a I d +j "I dv e-jvu (I--
c3 = due Sd(u)f dye Sd (v) Sr (fd) • (IV-68)

0

"* Using Equation IV-66, we obtain:

2 - S (IV- 69)

0 -4

Now, from Equation 111-31

S r() = N + S (w), where S (W) = F [R(t -t) (IV-70)
r 0On rn r ~ ~

I t39
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Using Parseval's theorem, we have

2 r 1
+1 f NIyi2ld Sn () (IV-71)

C N N2  2rTd' n r0 i r

From Equation IV-63, we obserwe that

2E
r

N
2 0

dc (IV-72)

I+ f S ISd)1 2 S
2Er No -_ T- r •

3. .valuatIon of d2  for Non-Stationary Case• cony.

From Equations IV-51 and 111-31, we observe that:

2E f 2
c =N N2t) (t) )R t, t.) dt dt: ; +0

C N d ( c L n k. CL I rc
0 W r

For our particular problem, the desired signa: is an attenuated replica

of the transmitted envelope f(t) which has been shifted in frequency and dei,.yed
in time.

Let

ST(t) = Et (IV-74)

and I

Sd(t) = - (t-T d) e

40 
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Ten, 0 is:

2 E rdt4 d tC d (IV-75)
r~ tF e dt d

rc Njj (Ta¶d)f ~Td)Rt.te CL CL

1 0

I* ~From Equation 111-23:1

R(t ,t )( 2 E)~I z fa (x) M (t -t :x)fT(t -x)7*(t X) dx (IV-76)
a. t 2 Jqjx 0 CL

We recall that

4- ~ +i.i- (t-t)z

M (t -t :X) P (x: x) e di- (IV-77)

-. We have:

14EE1 -E1tZM
2 t r 2  Iffufdt CL- dxdift -T T? t (

,-rc 2>? a. d (tr) Ltx

0 
(t x .:X

q q

*x ý .+ dt u Lit-8

41
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Rp-arrnnaina thp terms we hae.:
!

2 _ 4EtEr IElZI ' a
tr2 (-xL: X)

rc 2N2 q IK

f L O aCX1 La 'd CX Lx

!I

(t X) f(tý - Td) exp +j d - L) (I V- 79)I

fi d!

II

First, observe that the fourth integral is just the complex conjugate of
the third integral. Second, observe that the third integral is identical (except for
a phase shift) to the two-dimensional correlation function defined in Equation III-

24. With these observations, we have:

II

f dt f" (t-x)f*(t • ) exp I-jtC (rd-J.) I

fdt "(t -x) f(t. T exp -jt( -v) I

= (T; X, ;d) y)j2 .( X;.ýd - 1) (IV-80)

Observe that we normalized Y(0), so that '-. (0, 0) =1.1

Equation IV-80 is just a definition of the signal ambiguity function.
See, e.g., Woodward (Rererence 1) or Siebert (Reference 9).I

Next, we obseive that the term a (x) pq (j,(:x) is just the joint prob-1

ability density of the scatterers in delay and Doppler.

A
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TVV Wial c.'.A• LIis tLIZIs. a tC.cLL. ri116 IuaLiSJL-l

s (X;.t - a x) Pt, (I: X) (IV- 81)
• qlx

.'a.

Substiruting Equations IV-80 and IV-81 into Equation IV-79, we have:

I
4E E -!E11Z•2 t r 2tz3 r (d t 2 fdx ss(x:v) Y"(Td-X;vd-w) (IV-82)

rc ~d d~ 2N' f2

0

• 2

Therefore, for the conventional receiver rc (T d-d) can be expressed
as a two-dimensional convolution of the reverbe-'"tion scattering function and the

3 1 signal ambiguity function./

Combining Equations IV-82 and IV-73, we have:

I - + dx d-L s (x:,.L) Yf (T" -x; U,'x) tV8d
c N N f) d-d

0 o0

I From Equation IV-63, we have:

I 2E
r| " N

d 0 (IV-84)Sc I1 I 2,
1 +NIzl lEt ffdxd js(x:,JY(T -dX; -'d )

I+N " d d

In this section, we have derived the structure of the optimum receiver.

'AWe observed that the output S/N ratio, d2, provided a reasorunble characteriza-

tion of the receiver performance. Frequently, the structure o-: the optimum

U • / This particular form is not new. Westerfield and Stewart (References 14 and
i5) obtain a si.milar rtlation. Green (Reference 16) describes its application

to radar astronomy.
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receiver is complex or requires knowledge that might not be available. In this
case, one commoniy uses a conver..ionai receiver. -We observed that the per-
formance depended on two parameters d 2 and 2c. To keep the subsequent work
from getting immersed in details, we decided to use the single parameter d- asc
a basis of comparison. The principal results that we will use in the subsequent

work are Equation IV-44 (and its various modified forms; e.g., Equations IV-46
and IV-47) for the optimum receiver and Equations IV-72 and IV-84 for the con-
ventional receiver.

In the next section, we will derive some general properties relating to
signal design and processing in the presence of non-white Gaussian noise. After
deriving these properties we will return to the reverberation problem of interest.

44

TthuT Dl.littl.3nC.



V. SIGNAL Srj1IGN %J1,,.z -11=

SIn the preceding -ections, we have formulated the detection problem in
I the presence. of reverberatio.i. The pertinent results. can be summarized briefly.
• The optimum receiver formulated a test statistic

S f f (t) r (t) dt (V-I)

7' -T
where q (t) is the solution to the integral equation.

Td f R~t•• q'(t8)
Sd(t) =a R(t7.1t) q dt 6 -T<tCL < +T (V-2)

-T

2
The performance of the system depends on a quantity d , where

T

2 f "
d f q (t) Sd (t) dt (V-3)

-T

When the interference has a "white" spectrum, i.e.,

R nT(ta, t) = Nou (t -t) (v-4)

then

N(tq =N S d (tIX) (V-5)

and 0

2E

d2 2E r (V-6)
o N

J The performance depends only on the received energy and not on the
signal shape.

45
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For any other spectrum, d2 depends on the signal shape. In this section,
we derive several properties regarding signal design.

A. PROPERTY I

The performance of the optimum receiver is minimized by choosing the
complex envelope of the signal, Sd(t ), equal to the eigenfunction of the noise
with the largest eigenvalue.

The proof of this statement is as follows. For any threshold AO, the
performance of the optimum receiver is monotone in do, where

T

d 2 (t) Sd (t) dt (V-7)
0 j

-T

and

T

S (t f (t,t)Q q(t I) t• -T <t <T (V-8)

-T

Expand q (t.) using the eigenfunctions of R (t, t)
n Ta

q(tJ = q qi 0i (t:) (V-9)
i-1

where the 0. (t) satisfy the integral equation
1

T

k 0k (t) = R nT (tI,t3 ) esk (tB) dto (V-10)

-T

Substituting Equation V -9 into Equation V-8 and using Equation V- 10,
we have:

2

S d (t a) qk C k 0 k(t) (V-I )
i=1

/ See Reference 7.
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Similarly, we could expand S (t )using the eigenfunctions

d1.3 d• s(ta) -: ,- sk (t) (V -12)

Equations V-I and V-12 imply
.~Sk

q k (V-13)

k 2I k
Now, s .O

d2 i (t) l (t) dt (V-14)

Integrating and using the orthonormality of the eigenfunctions, we have:

2 (v -45)

d Y 2--(-5

"" Now, the sum of the I Sil 2 is twice the energy in she signal.

2E O S 2 (V-I6)
1=1

2 2

Denote the largest eigenvalue by a L. en clearly d2 is minimi .,ed by
setting *.

T ISL2 = 2E (V-17)

S -0 i L (V-18)

B. PROPERTY 2
•" 2

- If S)t) is chosen to give the minimum value of do, the o2tmum re-

4 ceiver is identical to the conventional receiver.

if, S (t) = 2E- 0 (t )(V - 9)di r L C
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Then, Equation V-8 becomes:

T

.F2 F, (t f "R (t t ))q . dtA (17-20)
r L :X f nT2

-T

From Equation V-9, we see that:

q (t,) = 2 L(t) = I S (V-21)

L L

which is, of course, the conventional receiver.

C. PROPERTY 3

If the conventional receiver is used for all signals, S (t), the minimum
d'

performance is obtained when Sd(t) is equal to the eigenfunction of the noise with
the largest eigenvalue.

The proof is analogous to that of Property 1.

D. PROPERTY 4

IfR1R ( t8 ) is a positive-definite correlation function corresponding

to a process with finite variance and the Ok(t) are a complete orthonormal set, then

there is no unique"Sd(t) that Maximizes d2
d0

The positive-definiteness implies therc are no zero eigenvalues in the
expansion of the noise. Since the Ok(t) are a CON S set there is an infinite number
of eigenvalues. Thus, there is no smallest one. This means that one can suc-
cessively increase d2 by choosing Sd(t) equal to eigenfunctions with successively
smaller eigenvalues.

e

J, Complete orthonormal.
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I'
The intuitive meaning of this statement should be clear. Suppose

P RnA (ti,t 1 ) = 0. Then, if we consider the typical noise spectrum shown in
I Figure 10, we see

RI SnT(f Snt(f)

(2T7f7 2 f ,)c*

• f

FIGURE 10 TYPICAL NOISE SPECTRUM

that the eigenfunctions are of the form:/

0 n(t) = kn cosxb nt -T<t<T (V-22)

and the eigenvalues are of the form::

2 = 1 (V-23)

n 4at (1 + b )
n

Where

2 2 2 b
b2 < b2 < b2 <-'- <  (V-24)

1 2 3 n

Thus,

2 2 2
C2 > or2 >"". > a (V-25)

1 2 n

Now, as we take successively smaller eigenvalues, the corresponding
eigenfunctions are cosines of successively increasing frequency. Thus, we can

I make the system perform arbitrarily well by transmitting a signal of arbitrarily

I high frequency.

I I/ 3ee pp. 99-101 of Reference 7. Note that there are also eigenfunctions of the
J1 ] form kn sin cbnt. An identical argument holds for these eigenfunctions.
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This fact was obvious from the shape of the noise spectrum. The lim-
itation here is a practical one rather than a mathematical one.

Observe that if we allow processes with infinite variance, Property 4

is not true.

As an example, consider the spectrum shown in Figure 11

""Sr tf)

S1~277/f)2+ OL2
A _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ ___ f

FIGURE 11 AN EXAMPLE OF NOISE SPECTRUM WHEN PROCESSES
HAVE INFINITE VARIANCE

This spectrum has a smallest eigenvalue,

N N
2 r 2 r I 1min 2 o1 2 2 (V-26)

n 2 4a (1 + b )

However, since this type of spectrum will not arise in our work,
Property 4 will be valid.

In our problem, the noise correlation function is determined by the
transmitted signal.

R (t 1 ,t 2 ) = R (t 1 , t2 ) + R (t 1 , t 2 ) (V-27)
St A R

T

"RnT (tit t = 2N-u° (t "t2) +f a(x)M W x(t-ts:x) '(tCL'x) * (t.S-x) dx

-T (V-28)

It
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Thus, as one changes the signal shape, one changes RnT (t 1 , t 2). There-

fore the problem of finding the worst signal shaWe is difficult for the general case.
Moreover, when the correlation function is specified by Equation V-28, one can notI always satisfy Equation V-19. We will confine ourselves temporarily to some
simple scattering functions and signal shapes. Clearly, the reason we are con-
cerned with the worst signal shape is that it tells us what characteristics we wartj to avoid in our signal. After finding the minimum, we can show how the performance
improves as we move away from the minimum.

In Section VI, we will consider a stationary reverberation return. In Sec-
tion VII, we will consider a non-stationary return. In each case, we will evaluate

Sthe performance of the optimum and the conventional receiver as a function of theI •signal shape and scattering function.

I4

'5
It

I;
I:

I'
i!
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II
VI. GAUSSIAN SIGNALS, UNIFORM REVERBERATION

A. ASSUMPTIONS OF THE MODEL

In this section, we apply the results oi the preceding sections to a
specific situation. From our discussion in Sections III and IV, we observe that
to evaluate the performance of the conventional receiver in a uniform reverbera- _
tioni environment we need the signal shape and the distribution in Doppler of the
scatterers.

I. Signal and Receiver Properties

We will assume that the velocity of each scatter is a zero-mean

Gaussian random variable.

Thus, X2

"p'" (X)- e (VI-l)

where B is the rms Doppler shift./

To use Equation II-36, we require the characteristic function:

B22

M (jT) = e 2 (VI-2)

We will assume that the transmitted signal has a Gaussian envelope and
linear frequency modulation.

Thus,

ST(t) - Re k e -at 2 _jbt 2 e jct (VI-3)

The complex envelope is: .42..at -2 _ t -bt -2
f (t) = k e " (VI-4) 3

/ Observe that B depends on the rms scatterer velocity and the carrier frequency
of the transmitted signal. I

I
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The amplitude and instantaneous frequency are shown in Figure 12. We
I observe that the pulse duration is infinite. This is an idealization which makes

the analysis appreciably simpler.

Since C
2t s2 /-2T

"2Et f I f(t)ji 2dt k2e -2at 2  k2 (VI-5)

t!k -2Et-7Et(VI-6)

We have:

-1tt
: [~ a a¼-t-bt 'd

k 4E (7ý!.) = 2E /e (VI-6)

To evaluate the performance, we need the Fourier transform of the
complex envelooe.

-SD

-- F(jiw) = E ' (-,a-- fetit +iUjdt (XT1-7)

Completing the square:

F(pjj) = exp - W2 112E'a ep-(j) 2- j UU 2  dt
4(a-+ jb)- 2 f a;jb 4(a+jb) 2j

(VI-8)

Integrating, we have:

F~~ a =Ej ( ) / a1 2
t (2 (a + jb) 4(a+jb)2

2 2
Sw a W - 2E-jb 2l b

2a+b) 4(a 2+b2) 4(a +b)a

* I53
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FIGURE 12 MAGNITUDE AND PHASE OF COMPLEX ENVELOPE
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If we define:
S(a 2 + b 2

(' a - (VI-lo)

I we may write:

F(jw) =2E e(2rr)¼ 1 2 +j lbt 4(a+ b2

(VT- 11)

u I The magnitude squared is:

2 12

!Fijuu 4Et (2 TT) exp- -2E exv) -ý

(VI-12)

As a simple check on the constant, we observe hat:

F(jw) -12 2E (V- 13)

Now, the correlation function Rf(T) is simply the inverse transform:2 2
f 2Et exp - exp - =2E- exp T2--- 0-

Sep (VI-14)

I F :om Equation IV-65, we have (for the stationary case):

RnR)- 2 M• • f()(VI- 15)

R ( 1 - a v

Substituting Equations VI-1 and VI-14 into Equation VI-I5, we have:

-(.r) = E *1 '2 2"V-

R =() Et - I exp -- (B + ) T(VI- 16)

Let :vB2 + (VI-17)
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Then.

2 22
R ()=E • Iexp - (VI-18)

n t av 2
r

and the reverberation spectrum is:

2E •1 2t av -'T" W
S ) exp - - - (VI-19)

nR 2 v 2
R 2 y

Using the conventional matched filter, we have:

(uj - wJD) 2

r- 2

2. Evaluation of Conventional Receiver

To evaluate the conventional receiver, we sir:iply substitute Equations
VI-19 and VI-20 into Equation IV-72. This gives:

d22 Er )2

( )2
c 2E F2T(. ,b2 2E -1 2

r 1 f ./3- ___2E__ t av,./2r 3; di.
QN r 2 2 v exp 2v2

(VI-21)

or

d 2 r I+ 2Er EI exp- + d -x
c N 0 N 0 ýtiv J 2A v2

S(VI -22)
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Collecting terms and completing the square, we have:

2E

d2 0 (VI-23)

N J K j -- , 1 +2Et I-av -exp - , 2
-I

where
2 224

Y2 =B + (VI-24)

Evaluating the denominator, we have:

E -I Ou 2
den. = 1+ t av exp - exp-2)

Letting = (VI-26)I o/2

and collecting terms and completing the square, we have:

den.= l+ Et -e B2---[0o B2+L2

00 2
2EW6r2i 2

2NAyf2(B +A) B +26J

exp - 2 (VI-27)~2(B+22 )

Integrating, we have:

den. =I + T Ap (VI-28)

2A(.v (B 2+2 A)* 2(B2 +2t6)

I57
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TT is expression reduces to: f

Et8 f2- Ti2
den. = 1+ exp (VI-29)

2(B + 2 6) 2(B2+ 2 6)

Now consider the behavior as a function of WD' B, and 6.

For B • 0, this can be rewritten as:

E8 2TT 2

den. = 1+ 2+-"exp" 2B2 1 (VI-30)
2B 2-(exp 2 2(1k

We observe that the ratios of importance are:

tuD : The ratio of the target Doppler shift to the rms

B reverberation Doppler shift

and

,-2 A : The ratio of the effective bandwidth of tie signal
B to the rms reverberation Doppler shift.

To maximize d2, we want to minimize the second term in Equation VI-30.

The first coefficient is a function of the environment and the transmitted energy.

Considering this constant, we want to study the behavior of the function:

2

'D Ai + 2'ýD V1-31)
f(..JŽ 2B ( R2 .)exp + 2( 1 + 2A)S2B

The curve is shown in Figure 13. /

/ One observes the similarity between Figure 13 and Figure 1 of Reference 14.
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The minimum value of f ' -J2 occurs when

w232 ( -BD

B B_6 - I <D B (VI-32)

=0 wD <B

At the minimum:

f(-~ ~~ 1.65i 1. 65(1+3~. (VI-33)B ' B6T B B.6 + 2

Clearly the importance of the term given by Equation '1V-31 depends on

the value of its coefficient in Equation VI-30.

To study this effect, we substitute Equation VI-30 into Equation VI-22:

d 2
d2 C _ci

nc 2 E 2 (VI-34)
0 1 exp'-

1+2-2B 2 (l+2B2)

where

D t (VI-35)2B

Physically this represents the reverberation-to-ambient-noise level in
the reverberation bandwidth.

I 1I N
Recall that 8 . Thus, D = - 0-

No /2 2 12

The denominator is simply the noise power out of a filter with a
Gaussian spectrum when the input is white noise of spectral height No/ 2 . From
Equation M-32, we observe that the numerator is just the total received power.
Thus, D is the reverbtmi-aion-to-ambient-noise ratio.
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The physical meaning of d2 should be clear. In the absence of rever-nc
beration it equals 1 .0. A decrease to a value of less than 1.0 represents the loss
in detectability due , reverberation.

We have plotted d2 for the following parameters:Tinc
D Physical Meaning Figure

0.3 reverberation < ambient noise 14

1.0 reverberation = ambient noise 15

1 10.0 rev./ambient noise = 10 db 16

"" 100.0 rev./ambientnoise=2Odb 17

• i The parameters on the curves are wD/B" This is the ratio of the target
velocity to the reverberatioh Doppler.

The horizontal axis is L"/B. This is the ratio of the signal bandwidth
to the reverberation Doppler.

:: ] Several observations may be made with respect to this class of signals:

a. For zero target velocities, we have monotone improvement as the
_ ! bandwidth increases.

I b. For non-zero target velocities, one can use either very small or
" I very large bandwidth signals. The point of the exact minimum is a function of

WD/B as given by Equation VI-33.

c. For small L, the non-zero target velocities, the improvement in-
"creases rapidly. However, for large 6, all targets behave the same./

.. I
i Now we consider the optimum receiver.

/ This statement is, of course, for the class of signals that we are considering
I (i.e., linear FM and Gaussian envelopes). It should be emphasized that this

statement is not true for all signals.
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B. PERFORMANCE OF OPTIMUM RECEIVER

We will use the same assumptions as in the preceding section. Now,

from Equation IV-46, we have

,= d- (VI-36)
o N '+S (') 2rr

-co r

Substituting Equations VI-19 and VI-20 into VI-36, we have:

2Er A exp 2. d-
22,0 N --E • I ep J_ x2 2 TT

-~0 t Y 2N

This can be rewritten as:

W2 2Eo exp i 2 J
d r f JI d (VI-38)

0 N -01+ Et82 - 2" exp --- 2 2r

2 P 7 2

For arbitrary parameter values, one cannot obtain a closed form
solution. We will first consider the case where the reverberation is small.

1. Perturbation Solution (Low Reverberation Levels)

Consider the case when

E -9
< .2T t < <1 (V I-39)

V

In this, the denominator can be expanded in a series which is absolutely con-
vergent.

1
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Ti

~~1 Then,2
S1 / 1

0 - 1-~ L Jexp -• + 7 P -
2

(2 ?eo term 2

dex 0 +*Tex 2

2E 1 et.p 2 -ie 7 2 T- D)2
(E 2 1+

d~o(2) to /' 2 " 2" Y" 2"Y 2 y2 d

(VI-40)
2E

The first term is just IT- r the conventional filter result.
0

The second term is

-2E B E- 2• ~•2

d2 ( 2) 1 t* ,/-2T feD dw

d2 (2) = -N .r -__

0 N B 2 Y1• 2

(VI-421)

Completing the square and integrating, we have:

2Er 1 -8 D--- I 2
d 2(2) rt iY 2T x

0 2 -Y 2-- (B2ep
0 ~rt (B +2t ~ 2B+2A~)

( r) - (VI-43)Jx 2M-2
(B0 + 2A) 2(B + 2 A)

Similarly, the (n+l)st term is:

- c2E E*, 1 Af~wdh 2  2
2nl r I1( t n _ ~d (VI-43)

0 N 0 1nA 2 f 6 2V
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Completing the square and integrating, we have:

2E Et- j '2D
nT 2~ I

o (n+1) = I - ) (l)n e % n
0 (B +-(n+l)L) B +(n+l) L

(VI-44)

1Then,

2 2 2d = /2TTD n

0~ NL ~ \2 Y 2~----- x + 2~- 2
0 n=O (B +(n-l) 2 B +(n+1) L

(VI -45)

Using the same type normalization as previously we can write: (for B • 0)

lI: n

+'"÷<-ln,' 2B(!+__A) n-i 1+ (n+i) L.)
222

2E~~ 1 +Et 2B2

exp 0 (V1-46)

+ B2

: We observe that the first two terms of the series are identical to a series
• • ~expansion of d

(E 8 127-

d2 2E (Ee (222
_ 1't exp1 - +n- (VI-47)

oB 2 ,

tC

j which is the signal-to-noise ratio at the output of the convenidonal filter.r2
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Several observations may be made by examining Equation VI-46:

a. As - the performance of the conventional and that of theB2

I optimum filter will approach each other. Physically, this means that a signal
whose bandwidth is much greater than the reverberation Doppler tends to elimin-
ate the reverberation disturbance.

b. As - --D , the performance of the conventional and that of the
B

optimum filter will approach each other. Physically, this means that if the target
4 Doppler is much greater than the re-erberation Doppler, the effect of the rever-
I beration is reduced.

Et v7 -
-c. As E -- / -. 0, the performance of the conventional and that of

the optimum filter will approach each other. This is just the obvious fact that as
i • the reverberation strength goes to zero, the optimum filter becomes the conven-

tional filter.

These observations really indicate when the effects of reverberation are
not important. Now consider the case for arbitrary reverberation levels.

2. Arbitrary Reverberation Levels

4 2
Now we consider the general case. The normalized dopt is:

I

I Letn d 1+ an eriig whae

cc -_ - x (VI-49)

N 1 •2 Y
2o 6*- dw

d (VI--8)
N|C + 2 Y-xp-

!

1 1Letting x - and rewriting, we have:

df 2_ exp[.j (Ix49

1o.2+ 2B (87/2)T exp 11 1
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f
We observe that the quantities of importance are:

a. " D/ B : ratio of target Doppler to reverberation Doppler

b. A /B : ratio of effective signal bandwidth to reverberation
Doppler

c 2 D ratio of the total reverberation power level to
the noise power level in the reverberation
bandwidth. /

"The integral in Equation VI-49 was evaluated numerically for several
cases. The results are shown in Figures 18 and 19. We observe that the curves
have the same general characteristics as the curves for the c3roventional receiver.
For D = 0.3 and 1.0, the quantitative difference in the performance is insignifi-
cant and the curves are the same as those in Figures 14 and 15. However, for
D = 10 and 100 (i.e., reverberation/ambient noise ratios of +10 and +20 db),there
are appreciable differences in some cases.

Let us examine the effects of these differences. To demonstrate the
method of comparison, consider a specific example, in which the parameters are:

a. D' /B = 5.0

b. L\•/B = 1.0

c. D 100.0

For this set of parameter values;

2
dno = 0.762 (VI-50)

and

d2 = 0.528 (VI-51)nc

1SI EI____N

I I Recall that 9 = Thus, D t 2
No/2 2 2 2"-

The denominator is simply the noise power out of a filter with a Gaussian spec-
trum when the input is white noise of spectral height No/ 2 . From EquationI1I-32,
we observe that the numerator is just the total received power. Thus, D is the
reverberation-to-ambient-noise ratio.
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iI
One's first reaction is that since the difference is about 1.5 db, the value of an
rnrt4maim filtav" ic "i,&.tifnnhla 1afatrsa v thic r-mr nriqcn ic nrm"ntuhnt m ic-

leading. Let us assume that we require a given d 2 to obtain a desired performance
level. Denotc this required d2 by dr. Assume that, with the above param-r
eters, the optimum system provides the required d 2 . Thus,r

2E
2 2Er 2

d r N d- d (VI-52)no N r
0

Now we want to find how much we must increase the transmitted signal
energy to achieve the same d2 with conventional processing. If we increase the
Stransmitted energy by a factor k, we have:

E =kE (VI -53)
rc ro

and

E =k E (VI-54)
tc to

From Equations VI-34 and VI-48, we have:

~2E
4ro k

2E Nd; ro0

ro N 0 -1 (- 55 )

S1I +-Dk p ex - I•
+ 2

For the above case:

d2?
kd n (VI-5n)

1- d 2*.D exp w/y-
no

B2

(Ifitis impossible to achieve the required dr by increasing the transmitted energy,
Equation VI-54 may have a negative solution. Clearly, k -nust be positive to be
meaningful.)
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Evaiuating, we obtain:

k = 2.45 (+3.9 db) (VI-57)

IThis increase in energy requi'red when a conventional receiver is used
instead of an optimum receiver gives a more accurate picture of the cost of non-
optimum processing. The difference in the two results occurs because as the
transmitted energy increases, the reverberation return also increases. Thus,
for high reverberation levels, one cannot combat the reverberation by raising
the energy level.

The conclusions to be drawn from this section are two-fold:

a. The most important step in combating reverberation is proper signal
design. This signal design can be accomplished using a conventional receiver.
As pointed out in Section V, one will not achieve a unique maximum. The allowable
range of signal parameters will be governed by such factors as available bandwidth,
pulse duration, sound path stability, and other system constraints. The choice of
signal will also be governed by what range of target velocities is of interest.

b. The second step is to consider how much one would gain by using an
optimum receiver instead of a conventional receiver. One must examine the
specific situation to see if the added complexity is warranted.

Now we want to conduct a similar analysis for the non-stationary case.

II

I I
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In this section, we consider the performa ze of conventional and opti-
mum receivers in the presence of non-uniform reverberation. As discussed in
Section III, if the distribution in range of the scatterers is non-uniform, then the
reverberation return will be a sample function from a non-stationary Gaussian
process. We consider first the conventional filter performance. In this section,
we restrict ourselves to pulses with Gaussian envelopes and linear FM.

A. CONVENTIONAL FILTER

As pointed out in Section IV, to evaluate the conventional receiver, we
require the ambiguity function of the signal and the scattering of the reveroera-I • tion. First, evaluate the ambiguity function.

From Equation 111-24, we have:

-)~t f= z)e d (Vil- 1)

For a Gaussian pulse,

8aE2

I_ Et Tt) Tr ( exp {-(a +jb) t 2 }(VII-2)
IiFirst, let b 0.

Then, substituting Equation VII-2 into VII-1, we have:

(8aE) fe2 -a2-) at
(,_L)_ ep a(- -a(t-) pt dt (VII-3)

I
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I:I
Completing the square and integratinj j

aT
2 E 2 exp -T a (VII- 4)1I

Then,

S(",w) ae (TTu)i 2 = 4E2 exp -aT2 (4a -5)

Normalizing,

I2

Y Y(Tw) 2 Wn(. W) = (o,o) exp -a - (VII- 6)

A sketch of the ambiguity function is shown in Figure 20.

f For b ý 0, we obtain:/

e (T.,u ) = 4E 2 exp aT. ( b- 2b(VI-7t 2 8 a(II7

and

2 (w - 2bT)28

exp aT - (VII-8)

The equal amplitude lines for the linear FM cases are shown in Fig-
ure 21.

/ One can either evaluate the integral or use Theorem 4, Siebert (Reference 17).
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We assume that the scattering density is a skewed Gaussian density.

I B 2x1 2 B2x2 - 2BLp +L 2 z 2  (VII-9)sI,)=2i -0L exp- 2VI229)2s(,Z- p B 2L2 (1-p )

The simplest case is p =0 (no skew).

IR lThen,

1i 2 + z
s(x, Z) exp - (VII- 10)

Substituting Equations VII-6 and VII-10 into Equation IV-84, we have:

31 2Er

2 __N_

+12 N _tff.ix diijs(x, w) T(T d X; Wd -W)

00

III+ t9
1p a (TdT) 2 -wd (Vil-11)
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I
i

Evaluating, we have:

d2 2E l 'El Z IE
d (T +.)c d'" d ( N N(+2)0 0 o(L2 + aa 2

B B+2a

2a2t2

I d + d
B2d (VII- 12)

exp- 2 1 B• 2 +2a

SFirst look at the behavior of d2 (0, 0) as a function of a.

The worst case is when

B L
a = -a (VII-13)2L J

Then,

2E 1 21E

d (0,0) - r I + 2 t 1 (VII-14)c N N BL+ 1

A convenient way to examine the behavior of d2 (0, 0) for other aconv
is to define:

6 B• a=k- = ka
2BL w (VII- 15)

d2 (0, 0)!cony 2
and examine In 2E /N = In d (0,0) (VII-16)

nc
r o
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II
Thus,

Id 2  t(Vl-17)

-In (0,0) = + In I + N L 1
nc No0 ( kBL) BL_ S(I + kBý(1+7)-

BL~
In Figure 22, we plot (1 + kBL) 2 (1 + -- ) as a function of k for

I j BL = 1. Since the function is symmetric (on a In scale) about k = 1, we need to
plot only k a 1. Observe that the nearer to one the value of this function, theJ better the system performance.

In Figures 23, 24, 25, and 26, / we plot dc2 (0, 0) for various values of

S I E IZ1 2  
tE

N BL, and k.
0

*. O

For non-zero T and wD, we want to choose a to make the term
D Do

2 El z E t D _D

N 2 1ex 2j L21+_ B+2J
+ + 2a 2a

i

as small as possible.

As before, there is no unique minimum. There is a worst value of a.
This worst value is a function of B, L, WD, and TD. There does not seem to be a
simple analytic expression for the worst value.

If Similarly one can use the expression in Equation VII-8 for the am-
biguity function of a Gaussian pulse writh linear FM.

II
/ The optimum filter result is also plotted. This will be derived in Section

I i VII-B and discussed at that time.

8
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I
•, F. OPTIMUM FILTER

STo 

find the optim um filter, we m ust solve the ilitegral equation de-rived in Section IV:

S(t) = t, ) q(t9) dtS (VII-18)

where

R (tt) = N 6 (t -t) + (t, t (VII- 19)LLL 0 an a.
r

and

t 1 2I E-E I Z 12 , +S n sC-L t 2 27 ft; ,
R• r t t t) ;-) et)w (VII-20)

-t I. -ZI22 t I t2 (2

i r

r 2(L2+ 
2

t 2E03Z2+22E
n~ ((22j+

4 2+

24~ ~ 2t - tx (B +a)+

.'t9 (+) --. j (VIII-21)
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To solve the integral eqnjatinn. wp will Pvnind th- klrn#l in n cnir.hli

bi-orthonormnal expansion.

A suitable series can be obtained from Mehler's expansion, / which is:

2 ( ) 2 2 1 HL (x) Hn (Y)
i27_ 1I- 0- 2 (1-o2 ) (n!) (n!)

IpI~i

where Hn x) is the nth Hermite function.

Since

CO H(X) H (x) exp x 2 dx n! n = m
~ff n T 2

0 otherwise (VH-23)

A suitable set of orthonormal functions are:

S2!
x) H n H(x) exp (VII-24)

(2-7)1 (n!)' 4

From Equation VII-22, we obtain the desired expansion:

exp - x2 (-+p2)+y 2 (1+i,)- -0xy =E 0n () 0 (y) (VII-25) I
: J/ T(1- p) 4 (1 - ) n=o

We observe that all of the eigenvalues of the Gaussian kern.el are
specified by a single number p.

/ See Reference 18. Our approach here is related to that in Reference 19.
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SNow we want to expand R (t,,. t) as given by Equation VII-21 into an EqainVI-1itL
S~r

series of the form of Equation VII-25.

Introduce two new variables:

= 2 B a (VII-26)

ID2 1 (VII- 27)

4 (L2+ 1

Then,

12 E Z1 2 2) 2+2
r (t' t 4DE exp - •t 0 2(C+D)+t2(C+D)

-2t t (C2-D2,) (VII-28)

Now let x = t , y = t,- o and solve for 3 and p such that Equation

VU-28 is identical to Equation VU-22.

We obtain

C+DS=C+(VII-29)

2

-(VII-3o)I • • 4CD

After a little algebra, we obtain:

2 [I) 2 1 8IIE 2 I
R(t ,t. I - tza 2TT (C-D (t )Yi (t ) (V-3 1)

n(C+D)1 F (C + D)] kCL k~
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whe re

!2

H nt L[4CD]2]exp{ t O2CD}
Y" (to) =((VII-32)

4
(n!) (2TT) C4 D

Including the white noise term, we obtain from Equations VII-19 and
VII-31:

(tt) = N 6 (t - t) + K Y I (t) Yk(t (VII-33)
r a 0 5 r- k a k 5 VI-3k=O

where

I E(I Z12 22 lz2 8aE t .T

K 2 -__ _-_ (VII-34)r 2 (4aL2 (C+D)2

Now we define an inverse to R r(t , t•).

fRr(tat) r(t, ty) dtý = 5t -t ) (VII-35)

It is easy to verify that:

CO K pn
(t1 1(t-t)) (V11- 36)

r a N N n n "nN 0 n=1 N+Ko
o r
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Ii
Lti C deioic inc coefficient in the sum:

3r _ N (VII-37)
SN + K; n 0

0 r + Tr Kr

Multiply both sides of Equation VI-18 by " (t t) and integrate.U This gives: r

Sd (•d)Rdt-(t t , t)?j(t t dt dt (VII-38)

which reduces to:

I ((t) t d (VII-39)

Substit-uting Equation VII-36 into VII-39, we obtain:

• n;/(t) Sd Y(t.(t2) dt (VII- 40)

Iii

A 0 .0

14 Let

n f n~ t
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Then.

1 (t1 S ( L Cn r (VII-42)

n0 0 n=1 n

which specifies the optimum detector. It is simply a band pass filter whose
complex impulse response is matched to q(t).

To evaluate the performance, we recall from Equation IV-44 that:

d = Sd(t) q* (t (VII- 43)
0 J L C

Therefore, using Equation VII-42, we obtain:

2= 1 (tn tdo 0 N f§d (t )S (d :t dat Cnrn n (tru. Sd (t) dt a (VII-44)

which reduces to:

2 r 2 r 1 C 2

0 N C r (VII- 45)
0 o n= n

Now, the 0 (t) are a CON set, so we may write:

"Sd (t): rn * (to. (VII -46)

n=O
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1
i!

* which implies:

I f (t) S•(t) dt a jr 1n2 Er

Since the eigenvalues are monotones decreasifig with increasing n, it
follows from Property I of Section V that d2 is a minimum when

r 0 nO0 (VII-48)1 - n

or

Sd(t) r io(t) (VII-49)

We see that this implies:

i exp at = exp t2 (VII-50)w + L2 2

S~w

Sor

B
aI (Vll-51)

"w 2L

From Properties 2 and 3 of Section V, we know that Equation VU-51

must be identical to Equation VII-13. In other words, the worst signal is identi-
cal for the conventional and optimum receiver.

To evaluate the error for the worst case, we must compute Co and ro.

At From Equations 'VU-37 and VII-47, it is clear that:

r =/2E (VII-52)

I
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C

C 0 N 1 (VII-53)oN N

+ - 1+--_
K K

r r

and from Equation VII-34

SE[IZ H E
K 2 t (VII-54)r BL +I

Then,

2 2E
d r 1 - Co (VII-55)

2E
r

N0

AE (VII-56)
t 1

1 + 
-

N BL +1
0

Equation VII-56 gives the same result as Equation VII-14 since the
filters are identical.

For the general case, the optimum filter and the conventional filter
will be different. To evaluate the error, we must sum the series given by Equa-
tion VII-45.

Writing a = ka , we have:
w

K ! E [Z 1 2 E 2k 2  (VII-57)r[2 1 1
r(k + 2BL) (1 + k2BL)5 + kO
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* ~ and

I ~ = (k + B)2BL)B)- kVl-8

(~K ~*2BL)5 (1I~ k2BL) + k

n n

d~ (t (TT d()d \1-9

2

I'- (t) = r) et(\'11-60)

and

H~t1I4CD]etD

where

I~ ,2LB 2BL +k] (\Tl - h62)

D -2L r 12B)(ii 3

D2t B 1 ý
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Then,

(16 E 2 a4 C r 2 2
r = f Hn t[4CD]2 e e dt ("111-64)

(n!)' O2r)'2 (~ ) -

Letting x t [4CD]', this reduces to:

(2Er) (2E ) aCO)4 2 x

(r - H( (x) exp - - dx (VII-65)rn(n!) (a + CD)i 1 2 202

where

2 ,3 2CD
a = (VII- 66)

a+ CD

DI-note the bracketed term by G (a):

1n

G (0) = f H(x)exp 2 x (VII-67)

n XP(--.'n)20

Substituting into Equation VII-45, we have:

2E 1 (1 (a) C

d r_ I 2 CD n . (VII-68)o No I (a+ CD) n=0I
0 ( a n=O)

Using the structure of the Hermite functions,y we can find an expres-

sion for Gn(a).

/ See Cramer, Reference 20.
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First, wc- evaluate G, I' for n 0, 2. ,j nd dcdUCC the expression
T f~ or jrbiurary n

Hermite Functions Gn ()

H (x) =1 G ") =1)1: ~2
HIX) X -1G 9 ( a -

SH4(x) = x1- 12 (, = o - )
4 4

6 4 2 3 3
H W 6 (x) =x 15x 45x - 15 G( = 13('- 1) (VII-69)

3 Looking at the sequence, we see that

I [ ]n
G a 1 n even (VII-70)Sn n

(2

S= 0 nodd

j )and

2 1 CD-a (%T -71)SCD* a"

Observe that for C 1,

T G (1) = I II--72)

1 (3Gn(1) = ( n 0
n

which corresponds to the case, k 1.
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f-ext, evaluate %In'

• n

C = (VII-73)
n NSn o

r

I
From Equations VII-57, VI!-62, and VHl-63 we have:

II
2.E IZILEtr K =- - (VI1-74)

r C+ D

and

C +D (VII-75)
!I C+D

Substituting Equations VII-74 and VII-75 into Equations VII-73 and
VU-68, we have:

a

I~ ~ 2FfZEt
2- E

C 2 N (VII-76)
In N I 1 2I0 22" E Z lEt _(+)n I i

N 0 D(C- D)n

-'"o 1a 21

d0 a 2a (CD)' (2m)! (2 .(VI-77)
no 2E IN - (a + CD) n-- (m!2m) C2 M

r o ( 2

n

where we have set m - since the odd terms in the series were zero.
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4

Z1 2
I [ EI Iz2• 1. 2 • t

t= 1,10, 100 (VII-78)
N I+BL

0

1 2. BL = 0.1, 1, 10, and 100

The result d2 is plotted --s a function of k in Figures 23 - 26. When
separate curves are not shown, dno is approximately equal to dnc.

Also tabulated in Equation VII-14:

d 2  1 (VII-80)
I nc ! E[IzI 2) E

2 t I

N 1+BLI 0

From the tabulation, we observe that there is very little difference be-j tween do and dnc. There are several reasons for this result:

I. The most important reason is that we have considered only the case
where the target has zero velocity. As shown in Figure 27, the target is exactly
at the peak of the scattering function.

i •If the target had a non-zero velocity or were displaced in range from
the peak of the scattering function, the difference between the optimum and con-
ventional receiver would be larger. This is because the optimum filter uses its
knowledge of the reverberation scattering function to partially "tune out" the
reverberation. For the case we considered, the largest amount of reverberation
was in the same range-Doppler location as the target. Thus, the optimum filter
could not tune out the reverberation peak without also tuning out the target. For

a -~ targets away from the peak, the optimum filrer can use its knowledge more ef-
fectively.

4

I -99



JI
I

t 2. A second reason is that the particular scattering functuon we n'ave
Archosen ic smonth in hoth d'recrionnq, One nf the advantages of :j non-stationary
model is that it uses the non-uniform distribution of scatterer6 along the path
of sound wave to improve its detection capability. Intuitively, one would think
that the more non-uniform the distribution is, the more useful knowledge of it
would be. Thus, our choice of a smooth scattering function tends to negate the
effect of an optimum filter.

!I
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1 FIGURE 27 TARGET LOCATION WITH RESPECT TO REVERBERATION
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Ii GLOSSARY
Ii

A attenuation of target return

a length parameter of Gaussian pulse

a (t) intensity functions; average number of scatterers per unit

time

B rms Doppler shift (reverberation)

b frequency parameter of Gaussian pulse
* 2

d S/N ratio; conventional receiver
C

d2 S/N ratio; optimum receiver
0

E received energyr

E transmitted energy
t

f (t) complex envelope (f (t) = u (t) ej0 (t))

thHn(W n Hermtte function
n

I I°l(.) Modified Bessel function; first kind; order zero

k amplitude

L rms length of scattering function

M (ju) characteristic function of scatterer Doppler shift

MI X characteristic function of scatterer velocity x q is a random
qq

variable, x is conditioning variable

N
2 height of ambient noise spectral density (double-sided)

g ! NA(t) actual additive noise
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nA(t) complex envelope of additive noise

Nr(t) actual reverberation return

n (t) complex envelope of reverberation returnr

PD probability of detection

P F probability of false alarm

pw (X) probable density of scatterer Doppler shift

Q(a, b) Marcum's Q function

R (t) actual returned signal

r(t) complex envelope of returned signal

Re real part

"Sd(t) complex envelope of desired signal

Sd (w) Fourier transform of Sd (t)

Sn (t) complex envelope returned from nth scatterer

S r(w) Fourier transform of R(t)

ST(t) transmitted signal

S(vIv2) characteristic function of joint scattering density

t delay due to nth scatterern

u (t) actual envelope

Zn complex number which is the magnitude and phase of return

, phase shift of target return

y scatterers per unit time (uniform case)

a 2 + b2

a
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Ii
likelihood ratio

a value of likelihood ratio

th
x n eigenvalue

0 (t) phase of transmitted signal
• th
0 n(t) n eigenfunction

S( (', as)) two -dimensional correlation factor

TD target range (delay in signal return)

I c carrier frequencyc

D target Doppler shift

J

Ii

lI

'1

107

*Arthur -. 1ittle.Inc.



PROJECT TRIDENT TECHNICAL REPORTS

Report No.

1011260 COLOSSUS 1, December, 1960 (C)

1021260 THEORETICAL INVESTIGATION OF ChOSS-FIX PROBLEMo
AND CORRELATION EFFECTS, December, 1960 (C)

103i260 THE SUBMARINE AS A SURVEILLANCE PLATFORM,
December, 1960 (S)

1041260 Title Classified, Decembei, 1960 (S)

1051260 AIRBORNE JEZEBEL, December, 196u (S)

1061260 SURFACE-SHIP SONARS IN OCEAN-AREA SURVEILLANCE,
December, 1960 (S)

1071260 Title Classified, December, 1960 (S)

1080361 LOW-PO, ER ENERGY SOURCES, March, 1961 (C)

1090561 SOLUS. May, 1961 (C)

1100561 NONACOUSTIC METHODS FOR SUBMARINE DETECTION,
May, 1961 (S)

1110561 ARTEMIS, May, 1961 (S)

1120561 COLOSSUS II, Mdy, 1961 (S)

1130961 RELIABILITY OF UNATTENDED ELECTRONICS EQUIPMENT,
September, 1961 (U)

1141061 NUTI.FG, October, 1961 (S)

1150162 DEEP JULIE, January, 1962 (S)

1160262 METHODS FOR ANALYZING THE PERFORMANCE OF DIS-
TRIBUTED FIELDS OF DETECTORS, February, 1952 (C)

1170262 MAGNETIC ANOMALY DETECTORS IN FIXED SHALLOW
WATER BARRIERS, February, 1962 (S)

109

Uhutia A.1wilt ut. i



Report No.

1180262 EL.ECTRICAL CONDUCTIVITY, COMPRESSIBILITY, AND
VISCOSITY OF AQUEOUS ELECTROLYTIC SOLUTIONS,
February, 1962 (U)

1190462 A FEASIBILITY STUDY OF THE PASSIVE DETECTXON OF
QUIET SUBMARINES, April, 1962 (S)

1200562 Title Classified, May, 1962 (S)

1210562 RADIATED NOISE CHARACTERISTICS OF DIESEL-ELECTRIC
SUBMARINES, May, 1962 (C)

1220562 DIRECTIVE RECEIVING ARRAYS, May, 1962 (C)

1230662 ANALYTICAL BACKGROUNDS OF COMPUTATIONAL METHODS
FOR UNDERWATER SOUND PROPAGATION, June, 1962 (U)

1240762 MARINE CORROSION AND FOULING, July, 1962 (U)

1250862 SURVEY ON AMBIENT SEA NOISE, August, 1962 (C)

1260862 DEEP SUBMERSIBLE WORK VEHICLES, August, 1962 (C)

1270862 THE EFFECT OF PRESSURE ON THE ELECTRICAL CON-
DUCTIVITY OF SEA WATER, August, 1962 (U)

1281262 ENGINEERING PROPERTIES OF MARINE SEDIMENTS,
December, 1962 (U)

1291262 AN INTRODUCTION TO MODULATION, CODING, INFORMA-
"TION THEORY, AND DETECTION, December, 1962 (U)

1300363 SPHERICAL DIRECTIVE ARRAYS: A PRELIMINARY STUDY,
March, 1963 (U)

1310363 ESTIMXTES OF SUBMARINE TARGET STRENGTH,
March, 1963 (C)

1320363 PHYSICAL CHEMISTRY IN THE OCEAN DEPTHS: THE
EFFECT OF PRESSURE ON IONIC TRANSPORT PROCESSES
AND EQUILIBRIA, March, 1963 (U)

110

;arthur 11.3ittIe.3ur.



Report No.

13330.63 SUBMARINE CABLES AND REPEATERS, May, 1963 (C)

1340663 APPLICATION OF ADAPTIVE SAMPLING STRA t'EGIES TOI THE PLANNING OF SURVEYS, June, 1963 (U)

J •1350663 CURRENT OPTICAL DATA PROCESSING TECHNIQUES -

ASW SYSTEMS, June, 1963 (S)

T 1360863 ACOUSTIC SCATTERING IN THE OCEAN, August, 1963 (U)

1370863 STRESS ANALYSIS OF SHIP-SUSPENDED HEAVILY LOADED
SCABLES FOR DEEP UNDERWATER EMPLACEMENTS.

August, 19,63 (U)

S1380863 RADIATED UNDERWATER NOISE OF SURFACE SHIPS,

August, 1963 (C)

"1390963 LARGE PROJECTORS, September, 1963 (S)

1400963 APOJI, September L963 (S)

* 1411163 ANALYSIS AND EVALUATION OF PROPOSED ACTIVE/PASSIVE
"FIXED, OCEAN SURVEILLANCE SONAR (RSR-Z) (S)

1421163 ENGINEERING MA FERIALS FAILURES IN UNDERWATER
SONAR PROJECTORS, November, 1963 (U)

1430264 COMMAND AND CONTROL IN LARGE OCEAN AREA ASW
SURVEILLANCE SYSTEMS, February, 1964 (S)

1440464 STATISTICAL ANALYSES OF OCEAN TERRAIN AND CONTOUR
PLOT`I1NG PROCEDURES, April, 1964 (U)

S1450564 Title Classified, May, 1964 (S)

1460764 TARGET CLASSIFICATION WITH ACTIVE SONARS, July, 1964 (C)

i 1470764 COMPUTER PROGRAM FOR ACOUSTIC RAY TRACING,
July, 1964 (U)

I t 1480864 THE VERTICAL DIRECTIONALITY OF AMBIENT NOISE IN THE
DEEP OCEAN AT A SITE NEAR BERMIJDA, August, 1964 (U)

E1491064 TEMPORARY LIMI1TED AREA SURVEILLANCE WITH PASSIVE
SONOBU )YS, October, 1964 (C)

Iv II

I artliur ~juta .3u|ttl.lm



r)QTD!TS TTRIU I C qT

No. of Copies

i0 Bureau of Ships, Code 371
Department of the Navy

Washington 25, D- C.

10 Chief of Naval Operations (OP. 71)
Department of the Navy
Washington 25, D. C.

4 Commanding Officer and Director
U.S. Navy Underwater Sound Laboratory
Fort Trumbull, New London, Conn.

ATTN: Mr. H.E. Nash

2 Office of Naval Research, Code 467

Department of the Navy
Washington 25, D. C.

2 Director

U.S. Naval Research Laboratory
Washington 25, D. C.

ATTN: Dr. H. Saxton

2 Chief, Bureau of Naval Weapons
Department of the Navy
Washington 25, D. C.

ATTN: Mr. I.H. Gatzke

2 Commanding Officer

U.S. Naval Air Development Center
Johnsville, Pa.

ATTN: Mr. R.I. Masoa

2 Commanding Officer and Director

U.S. Navy Electronics Laboratory
San Diego 52, California

ATTN: Dr. D.A. Wilscon

113
2Tt~ut JDAlttac.|t.•



No. of Copies

2 Commander, Antisubmarine Warfare Force

U.S. Pacific Fleet
Navy No. 128, c/o FPO
San Francisco, California

I Marine Physical Laboratory of the Scripps

Institution of Oceanography
San Diego 52, California

I Technical Library (Code P80962)

U.S. Naval Ordnance Test Station
Pasadena Annex
3202 East Foothill Blvd.
Pasadena 8, California

I Officer in Charge
U.S. Naval Oceanographic Unit
Building #1, Treasure Island

San Francisco 30, California

1 Commander
Oceanographic System Atlantic
Norfolk 11, Virginia

I Comruaander, Antisubmarine Warfare Force

U.S. Atlantic Fleet
Norfolk 11, Virginia

I Commanding Officer
U.S. Navy Underwater Sound Laboratory
Research Detachment
Navy No. 138, c/o FPOj New York, N. Y.

ATTN: Mr. Robert Martin

1 Hudson Laboratories

P.O. Box 239
Dobbs Ferry, N. Y.

ATTN: Dr. Allan Berman

114

Arthur .'ittl.3unt.



S No. of Copies

1 President
Naval War College

Newport, Rhode Island

1 1Commander

Destroyer Development Group Two
U. S. Atlantic Fleet
Newport, Rhode Island

Director of Research
Institute of Naval Studies
545 Technology Square

=- Cambridge 39, Mass.

Chief
Office of Naval Material
Washington, D. C. 20360

ATTN: MAT 322

Department of Defense Documentation
Cameron Station
Alexandria, Virginia

I€

I :

115

T •Arthur B•Atitse l•



I *� � 1

I i 2 �- -' r'1� I
� 01 �; ; I

I -4 - .' � - I
I ji �
I .. � -4O� I

� �i. I - I
I 7 � � -� .4�. �- -� � I

S -

I � (.� I ... 3� II * I

-� I 8 I

3, - .. I

- Ii
r � �. I - -� -

p Z � I

7 V I .�'-4�
5.'' - I

I � � I � I
I � � I � I

S-�* CI - - - ., � -.-.. :-�fr -
� ,�.. -c

I I � � I
I ____ ____ ___________ I

I --------- I I
I I I
I I I
I I I
I I I
S - - I - I

,I ,
I Li .1

�I � I
�I �I - �I - I

- I
01 .1

I I I
I I I
I I I
I I I
I I II. �

q - �

*� -4� : I(.2 I .- �- - I S -:4 1 3 � - �-.- .-p. S��T2�- � r,..�

�9y I I '��% *' � a-� I � � I � 0 I
, - I

� .1
$ � I

"*1 I ,� -' I
-� I � -� r� - �> �. I

* 7 A�.j. � � I
- I Ia I I -4g'�.-.�2

5 � .� .� I I
'¶? I! � I

C ',: ± � I�*.i 0 �fte�h - I
�. �I

-I � i
� � �I -n � -

'I � m

- I - 2a�.. 4 � o I
w .i�2a��: �

I � tiS 3�* � I

I I
p ____ -_____ -� - I. I

I I
I I _

I I
I I
I I

� �i s -

.�I �

- I
- - - I
;�j .'1

I �- I

I a
I I
I I
I I

- I
------------------------------------------------ L I


